Cases: No Forest Health Threats Listed

46.680888, -92.51399
To regenerate paper birch
43.626735, -91.304481
Regenerate a mature oak stand to a young stand of similar composition.
47.041534, -94.334
Bolster oak regeneration on a stand with poor natural regeneration and heavy competition, after first cut in two cut shelterwood harvest.
47.565127, -94.076095
Test silvicultural systems that adapt red pine forests to anticipated changes in climate and disturbance regime.
46.804319, -84.10466
Thin stands of overstocked birch pole-sized regeneration to maximize stem growth and quality development
47.095924, -93.58099
Create a young stand of quaking aspen enriched with long-lived conifers including: white pine, white spruce, and white cedar
46.86377, -94.71895
Test the hypothesis that retaining a live seed source on a FDc23 jack pine harvest site will result in adequate natural jack pine regeneration.
46.446049, -91.51028
Regenerate a vigorous stand of jack pine that will be managed on a 48-year rotation in order to achieve timber production objectives as well as Pine Barrens ecological/wildlife objectives within Wisconsin’s Northwest Sands Landscape.
46.380167, -93.406167
Two step shelterwood harvest to encourage red oak, basswood, birch regeneration.
46.822, -93.675
To use a two-step shelterwood harvest in a mature northern hardwood stand with the objective of increasing the oak component of the future mixed hardwood stand.
43.634511, -91.499047
Convert agricultural land to new Central Hardwoods stand.
47.547518, -93.374005
Introduce conifer species into a stand previously composed of almost pure aspen.
48.027063, -94.15836
Increase white/red pine, decrease aspen
46.645463, -92.666523
The objective is to perpetuate red oak and mid-tolerant northern hardwoods on the site.
46.681857, -92.572386
Regenerate aspen while retaining ruffed grouse habitat needs.
47.216049, -93.648893
Establish a de novo stand of hybrid aspen using ‘dense pack’ plantings and precommercial shearing to promote suckering.
47.258759, -93.16978
Regenerate spruce and aspen in mixed stand for future commercial harvests
47.243333, -92.01083
To successfully regenerate the stand to a Black spruce and Tamarack type through natural seeding, using a two entry strip cut harvesting method.
46.841087, -92.719485
Precommercial free thinning at age 20 to reduce aspen dominance and favor northern hardwood species.
47.551146, -91.16376
Multiple goals; but primarily to develop coordinated multi-landowner (USFS & MN DNR) stand management plans that integrate ecological, timber, water quality, and wildlife habitat objectives.
47.240113, -92.13053
Convert a poor quality aspen / paper birch stand to pine.
47.00763, -93.731335
Manage for quality hardwoods and multiple age classes through release of crop trees and allowing for regeneration of red oak and paper birch through variable density thinning.
46.433207, -92.23757
Shelterwood harvest to regenerate the stand to paper birch.
47.39792, -95.55734
Natural regeneration of jack pine while maintaining a robust native plant community
46.251067, -92.389309
Oak crop tree release to improve timber quality, stand health and mast production for wildlife.
87.554415, 44.50375
Regenerate a mature oak stand to a young stand with similar composition.
44.52316, -92.55608
Regenerate a mature oak stand to a young stand of similar composition using clearcut with reserves method.
45.209418, -88.360515
Promote mixed oak-pine stands for quality sawtimber and wildlife habitat associated with the Northern Dry-Mesic Forest natural community. Test various mechanical scarification techniques to create favorable seedbeds and increase oak and white pine regener
46.680039, -92.51371
To examine the effects of tree density or spacing for crop tree management of birch stands.
47.485156, -93.360295
Use patch clearcuts in a string-of-pearls configuration to create gaps in which to plant white spruce to create mixed wood
48.260273, -94.134583
Reforest a black spruce lowland with a local seed source.
47.05776, -92.097232
Regenerate white and red pine using a shelterwood system and controlling competition with herbicide
46.691, -92.536
Regenerate an even-aged mix of red pine and white pine using a seed tree system, augmented with low density planting of red pine
46.275026, -93.388933
Create a high quality, structurally diverse (un-even aged) hardwood forest via implementation of a variable density treatment (crop tree release / group selection harvest).
47.586677, -95.064547
Determine if a selected red pine plantation is declining in growth after a thinning.
47.200157, -91.91711
Natural regeneration of paper birch by reserving mature aspen and scarifying the site with a salmon blade.
46.614308, -93.486841
Sample reserve patches retained for legacy purposes during aspen harvests (clearcut with aggregated retention) to evaluate "old forest" attributes.
45.394348, -79.5639
Promote black cherry regeneration as a significant component of a tolerant hardwood stand
46.422387, -92.01315
The silvicultural objective for this area (unit 1) was a crop tree release, improvement thinning with regeneration gaps.
47.464404, -93.367368
Regenerate aspen and increase conifer component to create an even-aged, structurally diverse mixedwood stand.
47.186192, -92.049008
Regenerate red and white pine through natural seeding
48.244778, -93.5073
To regenerate jack pine after clearcutting with reserve trees, at 800 trees per acre with 95% stocking of desirable trees, 75% stocking of jack pine that is free-to-grow.
46.691877, -92.526878
This 1984 treatment was designed to demonstrate two types of reserve management: 1) mechanical restoration of open understory treatment, as a demonstration of historical stand structure maintained by surface fire regime, and 2) no treatment.
47.410257, -95.13045
Even-aged management to produce successive crops of jack and/or red pine.
48.219279, -94.022102
Maintain white spruce component to mixed species stand dominated by aspen.
43.201444, -90.66377
Transition from a two aged oak dominated stand to multi-aged northern hardwood stand
45.831715, -94.653849
To use a two-cut shelterwood system to maintain a significant oak presence in a future mixed hardwood stand.
47.306, -94.735
Even aged management of Red Pine. This treatment tested the effect on seedling growth of adding N to Velpar applied for competition control.
48.753137, -95.333581
Harvest standing jack pine and aerial seed back to jack pine with mechanical site prep.
47.560911, -93.24452
Release jack pine from hardwood competition.
46.678469, -79.26407
To promote yellow birch regeneration as a significant component of a hardwood stand
47.077938, -92.247156
Increase yellow birch stocking, maintain paper birch component, and expand basswood while limiting aspen expansion.

1925 Jack Pine Thinning Study and 2015 Replicates (UMN Cloquet Forestry Center)

Study of ecological and stand dynamics changes after a single thinning from below

Cover type: Pine

1979 Paper Birch Shelterwood (UMN Cloquet Forestry Center)

To regenerate paper birch

Cover type: Aspen-Birch

33 Years of Northern Hardwood Management (Ashland County)

Regenerate northern hardwoods species to maintain the northern hardwoods covertype.

Cover type: Northern hardwoods

5 Year Oak Wilt Containment Study (WI DNR)

Stop the below-ground spread of an active oak wilt pocket in order to maintain oaks into the future.

Cover type: Northern hardwoods

A Comparison of Establishment Methods for Northern Red Oak Regeneration in a Southern Dry-Mesic Oak Forest (MN DNR)

Regenerate a mature red oak stand to a young stand of similar composition.

Cover type: Central hardwoods